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The evolution of a bidimensional foam submitted to continuous quasi-static shearing
is investigated both experimentally and numerically. We extract, from the images of
the sheared foam, the plastic flow profiles as well as the local statistical properties
of the stress field. When the imposed strain becomes larger than the yield strain,
the plastic events develop large spatial and temporal correlations, and the plastic
flow becomes confined to a narrow shear band. This transition and the steady-state
regime of flow are investigated by first focusing on the elastic deformation produced
by an elementary plastic event. This allows us to understand (i) the appearance of
long-lived spatial heterogeneities of the stress field, which we believe are at the origin
of the shear-banding transition, and (ii) the statistics of the dynamic fluctuations of
the stress field induced by plastic rearrangements in the steady-state regime. Movies
are available with the online version of the paper.

1. Introduction

As in most non-thermal disordered systems, the mechanical properties of foams
are history dependent; they vary with the shear sequence which has been previously
applied to the sample. In Part 1 (Kabla & Debrégeas 2007), this behaviour was
evidenced using a numerical quasi-static model of a two-dimensional foam submitted
to an oscillating strain of moderate amplitude (less than one). A fresh (unsheared)
foam was found to exhibit a continuous change in its elastic modulus, normal stress
difference and yield stress, as the number of applied shear cycles was increased. This
evolution of the mechanical response was associated with a measurable modification
of the foam structural properties: oscillating shear relaxes the foam structure and
produces anisotropy in the film network.

When a foam is sheared beyond the plastic strain limit (of the order of 1), it flows
continuously as a viscous liquid with a viscosity that decreases with the shear rate
(Khan, Schnepper & Armstrong 1988). At vanishingly low shear rate however, i.e.
when the typical rearrangement duration becomes smaller than the inverse of the
strain rate, the flow becomes intermittent (Gopal & Durain 1995, 1999). This latter
regime can be probed by performing a creep experiment in which the stress is measured
while the foam is slowly driven. The resulting stress versus strain curve exhibits an
initial quasi-linear part, then reaches a maximum before decaying to a lower value. In
the continuous regime of flow, the stress signal exhibits large fluctuations reminiscent
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of stick—slip friction which reveals the underlying intermittent nature of the plastic
processes (Pratt & Dennin 2003).

Beyond these macroscopic observations, several aspects of the flow are still unclear.
One of them is the existence of a quasi-static limit, a finite value of the strain rate below
which the flow becomes strictly strain-rate independent. Secondly, the stability of the
average flow profile with regard to shear-banding instability — i.e. the confinement
of the plastic events to small regions — is still highly debated; the conditions for the
appearance of shear bands remain to be clarified, even for two-dimensional foam
systems (Debrégeas, Tabuteau & di Meglio 2001; Kabla & Debrégeas 2003; Cox,
Weaire & Glazier 2004; Wang, Krishan & Dennin 2006; Janiaud, Weaire & Hutzler
20006).

In the present paper, the numerical model described in Kabla & Debrégeas (2007)
is used and complemented by an experiment on a real bidimensionally confined
aqueous foam in Couette geometry. This system allows us to measure the spatial and
temporal distributions of the plastic events, as well as to monitor the evolution of
the stress field as the material is continuously sheared. We attempt to correlate these
two measurements in order to provide a global understanding of the elastic to plastic
transition, as well as the steady-state regime of flow.

In §2, a detailed description of the experimental and numerical systems is provided.
Tests are performed to establish the existence of a quasi-static regime in the
experiment, which allows for comparison with the numerical system. In §3, the
evolution of different global quantities (shear stress, free energy, flow profiles) is
studied during the elastic to plastic transition. We analyse in §4 the mechanical effect
of T1 events (the elementary plastic processes in two-dimensional foams, figure 1a) on
the stress field. Based on these results, a qualitative model is proposed that captures
both the shear-banding instability and the observed heterogeneous modification of the
sample structural properties (§5). In § 6, we investigate the dynamics of internal stress
fluctuations induced by T1 events which take place in the shear band. A statistical
mechanical model is proposed that accounts for most characteristics of the observed
stress dynamics.

2. Experiments and simulations
2.1. Bidimensional confined foams

Three-dimensional foams are highly diffusive to light and thus hardly accessible
to bulk imaging. Direct detection of T1 events can be obtained by diffusive wave
spectroscopy (Durian, Weitz & Pine 1991; Hohler, Cohen-Addad & Hoballah 1997;
Gopal & Durain 1999; Cohen-Addad, Hohler & Khidas 2004), but this technique does
not provide a spatial resolution, which is why many studies on foam rheology at the
bubble scale have focused on two-dimensional systems for which a direct observation
is possible. Three main experimental systems have been used. (i) Langmuir foams
are formed by depositing a mono-molecular layer of amphiphilic molecules on the
surface of water. The monolayer exhibits a phase transition between a dense liquid
phase and a dilute gas phase (Dennin & Knobler 1997; Courty et al. 2003). In the
coexistence domain of the phase diagram, the dense and dilute regions spontaneously
organize into a foam structure whose cell size is of the order of 10 pm. (ii) Rafts are
made of a monolayer of soap bubbles floating at the surface of a liquid bath (Bragg &
Nye 1947; Lauridsen, Twardos & Dennin 2002). The raft is sometimes covered with a
transparent glass plate to facilitate its observation (Abd el Kader & Earnshaw 1999;
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FIGURE 1. (a) Example of a T1 event in a two-dimensional confined foam. This elementary
plastic process results from the exchange of neighbours between four adjacent bubbles (noted
a, b, c and d in the pictures). (b) Two pictures of the confined two-dimensional foam:
(i) initial (unsheared) foam, (ii) foam, under strain. (¢) Definition of the different geometrical
and kinematic parameters.

Dollet et al. 2005; Wang et al. 2006). (iii) Confined two-dimensional foams consist
of an individual layer of bubbles squeezed between two flat plates (Debrégeas et al.
2001; Asipauskas et al. 2003; Cantat & Delannay 2005). The bubble diameter is
adjusted so as to be larger than the distance between the plates.

In the present study, the latter configuration is used. Details of the set-up can be
found in Debrégeas et al. (2001): it is composed of an inner shearing wheel and
an outer ring (of respective radius ro=71 mm and r; =122 mm) confined between
two transparent plates separated by a 2mm gap. Disordered foams are obtained by
bubbling nitrogen from two hoses into a controlled amount of soap solution. Here,
we focus on the limit of dry (polygonal) foams with a liquid volume fraction of 1%.
The mean diameter of the bubbles is of the order of 2.2 mm (figure 1). Shearing is
produced by rotating the wheel with a stepper motor while the outer ring is kept
fixed. Both the wheel and the ring are tooth-shaped to avoid bubble slippage. A
CCD camera is positioned above the cell to allow monitoring of the foam during
the experiment. The network of films is then extracted by image analysis using the
software IDL.

This confined system has several important characteristics in comparison to the
two other systems. First, confinement walls eliminate the effect of gas diffusion
between bubbles and the external reservoir, which allows experiments to be run for
about 2 h without significant change in the bubble volumes. Secondly, although this
configuration avoids the dynamic coupling that occurs between the sub-phase and the
foam under shear, the confinement plates introduce a viscous stress as detailed further.
Lastly, the confined geometry allows access to the stress field in the material through
a simple observation of the structure of the films. Since the area of the gas/liquid
interface is fixed in the horizontal plane, the free energy F of any sub-volume Z of the
foam is given, to a constant, by the total area of the films that separates neighbouring
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bubbles. In the limit of an infinitely dry foam, the free energy is

F(@)=2T'h > I, (2.1)

{ﬁlms inside @}

where I is the surface tension at the air-water interface and 4 is the distance between
the glass plates. The sum is performed over all the films inside the sub-volume 2, and
[; are the horizontal arclengths of the films. From this expression, we introduce the
line tension y defined as: y =2I"h. Consistently, the internal capillary stress in the
confinement plane can also be extracted from the projected film network (Kraynik,
Reinelt & van Swol 2003):
y li,x li,y
W=z 2 T (22)
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It should be noted that these two relationships are not valid a priori for rafts in
which bubbles can deform in the vertical direction to accommodate the horizontal
stress.

2.2. The quasi-static regime of flow

The main limitation of this experimental system is due to the viscous stress exerted
on the foam by the confining walls upon shearing. Although the glass plates remain
entirely wet, the motion of the soap films induces liquid flows in the plateau borders
that connect the films to the plates. This yields a net viscous force that can overcome
the internal friction between bubbles (Cantat & Delannay 2005). As a model of foam
bulk rheology, this system is thus only valuable in the limit of quasi-static flow. This
regime is expected when the shearing time scale 7., = &' is shorter than the time
scale for stress relaxation 1., associated with a plastic event. (For consistency with
the companion paper, and to avoid any confusion with the line tension y, the shear
strain will be systematically notated ¢.) The flow then consists of a series of elastic
charges interrupted by stress drops associated with the (rapid) plastic events (Pratt &
Dennin 2003). During the charge periods, the foam is in static equilibrium, whereas
all dissipative processes take place during the fast rearrangement events.

Measurements of the time t,.,, in confined foams have recently been carried out
by Durand & Stone (2006) who showed that this time scale is mostly controlled by
the surface rheology of the surfactant monolayers. For bubbles of roughly the same
diameters as in the present experiment, they found that ,.,,, is between 0.5 and 3.7 s
for a large range of surface and bulk viscosities. The foaming solution used here is
a commercial foaming agent (Teepol) 2% volume in water. Although it is different
from what was used by Durand & Stone, 1s can be taken as a realistic estimation of
Tre1ax fOr this experiment.

In order to determine the limiting rotation rate §2 for which the flow is quasi-
static, several tests are carried out. For different value of £2, we monitor the bubble
displacements during the time period to= D/(rof2) required for the wheel edge
to move over one mean bubble diameter D. These kinematic measurements are
performed in the steady-state regime of flow which is found to be reached after the
wheel has been rotated one full turn. Averages are calculated over the time and the
angular coordinate. We thus extract the average displacement u(y) in the direction
of the flow and the standard deviation of the radial displacement +/(u,(y)?) as a
function of the distance y from the edge. Both quantities are scaled by the bubble
diameter D.
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FIGURE 2. (a) Shear velocity profiles u(y) and transverse fluctuations profiles /(u (y)?) for
different rotation rates £2=2.9 x 10~ rads™! (solid line) and £2 =5.8 x 103 rads~! (dashed
line) (data from the experiment). These measurements are obtained by averaging displacements
over time and the angular coordinate. The radial displacements are obtained by tracking the
bubbles over a time 1y corresponding to a displacement of the inner wheel equal to a bubble
diameter D. (b) The shear stress profile as a function of the distance from the inner wall
The inset demonstrates that this profile is consistent with the expected stress decay in Couette
geometry (equation (2.3)).

Figure 2(a) shows the resulting profiles for two different rotation rates 2=
2.9 %1073 and 5.8 x 10°rads~!. The plastic flow is mostly confined in a small
region — the so-called shear—band in the vicinity of the wheel edge. The average flow
profile u(y) exhibits an exponential decay from the wheel edge towards the outer
ring. The decay length is approximately one bubble diameter (Debregeas et al. 2001)
so that the maximum local shear rate is of the order of &,,,, ~ £2ry/D.

Although the mean displacement in the shear direction is barely measurable beyond
the fifth row of bubbles, the standard deviation of the transverse displacements
remains large all across the gap. These latter are a signature of the long-range elastic
deformations induced by plastic events in the shear band (see § 6). The similarity of the
curves for the two different rotation rates establishes that the dynamic is quasi-static.
In this regime, the only relevant parameter is the total imposed strain and not the
shear rate. Hereinafter, all the experiments are performed at the same rotation rate
which is set at £2=2.9 x 103 rads™!, corresponding to &, =0.1s~!. (It should be
noted that, for larger rotation rates, a rapid decrease in the amplitude of the transverse
fluctuations is observed, although the shear profile remains mainly unchanged. This
indicates that the independence of the average shear profile with the imposed shear
rate is not a sufficient criterium to establish that the flow is quasi-static.)

A further test that the flow is quasi-static at this shear rate is carried on through
a mechanical approach. In order to demonstrate that the viscous stress due to the
confining wall is negligible, as expected in the quasi-static regime, we check that
the only contribution to the internal stress is due to surface tension. Using (2.2),
the average shear stress profile along the radial direction is measured (figure 2b). It
appears to follow the expected decay for a cylindrical Couette geometry:

2
a) =an(y=0) () 0y

These different tests establish that, within the resolution in stress and displacement
measurements, no observable shear-rate dependence pertains in this slow shear-rate
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regime. Still, at any finite shear rate, a velocity dependent drag force of the bubbles
on the confining plates is still present. Janiaud and colleagues argue that this residual
force, however small, is responsible for the observed shear-banding instability (Clancy
et al. 2006; Janiaud, Weaire & Hutzler 2006). These papers were motivated by an
experimental study in which Wang et al. (2006) compared the flow profiles in plane
parallel geometry for bubble rafts with and without covers. In the first configuration,
they observed an exponential decay of the bubble velocity, whereas in the second
situation they found a linear velocity profile.

In order to describe the flow profile v(y) in confined geometry, Janiaud et al.
start from the standard Bingham rheological equation, o = o, 4+ ndv/dy. The friction
force on the confining plates is postulated to be proportional to the local velocity
v(y) and characterized by a drag coefficient 8. This leads to an expression of the
stress gradient, do/dy =nd?v/dy> + Bv. In the steady-state regime, the mechanical
equilibrium imposes do/dy =0 which yields an exponential decay of the velocity
profile with a decay length equal to (8/5)"/?. It should be noted that this result is also
expected for a Newtonian viscous fluid sheared horizontally in a confined (Hele-Shaw)
geometry.

This model is based on a continuous description of the foam and thus ignores any
heterogeneity in the stress associated with the granularity of the material. This might
be questionable for systems which exhibit yield stress and are thus critically unstable
at the threshold of flow. In our situation, i.e. for polydisperse foams, the static stress
heterogeneity over a few bubbles is of the order of the plastic yield stress itself (see
later in this paper and in Kabla & Debrégeas 2003). By comparison, the drag force is
not measurable, so at least one to two orders of magnitude smaller. Our approach in
the present paper is therefore the reverse of Janiaud’s: it explicitly takes into account
the stress heterogeneity due to the cellular nature of the material, but neglects the
(non-measurable) viscous drag.

2.3. Numerical model

From (2.1), it appears that the static equilibrium configuration of the foam
corresponds to a minimum of the total length of the (projected) two-dimensional
film network, with the constraint of a fixed bubble area. This is precisely the basis
of the quasi-static simulation, described in Part 1, which therefore provides a realistic
numerical counterpart to this set-up.

Kabla & Debrégeas (2003) showed that the numerical foam exhibits a shear-
banding instability whose characteristics (flow profiles, velocity fluctuations, ...) are
similar to those observed in the experimental system (Debrégeas et al. 2001). One
may argue that the shear banding observed in the experiment simply results from the
fact that a foam is a yield stress fluid. For such a material, the decay of the imposed
stress associated with the Couette geometry (see (2.3)) leads to a confinement of the
flow within a small region near the inner wall. However, the numerical simulations
are performed in plane parallel geometry for which the shear stress is homogeneous
across the gap, suggesting that the localization process, in this case, has a different
origin.

In the present paper, we combine the two systems to study in detail the elastic to
plastic transition as well as the dynamics of local stress fluctuations in the steady-
state regime of flow. The numerical procedure for the evolution of the foam under
shear, and the definition of the different quantities monitored, are similar to those
described in Part 1. The dimension of the numerical foam in the shear direction is
increased in order to limit non-physical correlations induced by the periodicity. The
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FIGURE 3. Transition from the purely elastic response to localized flow (experiment). The
averaged displacement profile is plotted for different imposed strains: (a) 0 < € < 0.125,
)0 <e<025(c)0<e<05@d0<eg<l,(e)0<e<02 (f) 2 <& < 8 The curves
(a) and (b), which almost overlap, correspond to the expected response of an elastic material
(dashed line uy(y) =uo((y +7ro)/r2 —r2/(y +710))/(r1/r2 —r2/r1) with r,/r = 1.5). The profile in
steady-state regime (f) is fitted by an exponential: u(y) =uo exp(—y/1.2).

numerical foam dimension is thus 40 x 16 bubbles. When possible, results from both
the experiment and the simulation are presented. However, because of the limited
resolution of the experiment, some measurements can be obtained only with the
numerical system.

3. Transition to shear banding

In order to examine the transition to shear banding, an experiment is performed
in which the wheel is first rotated counterclockwise one full turn. The evolution of
the foam is then monitored as the wheel is rotated backwards. Figure 3 shows the
modification of the displacement profiles in the shear direction u(y) as the imposed
deformation is increased from 0 to 2, as well as the corresponding profile in the
steady-state regime. All distances are scaled with the displacement u, of the wheel
edge during the same period. For small imposed strain (€ ~0.25), the foam deforms
almost elastically (few T1 events occur). The corresponding profile is consistent with
what is expected for a linear elastic deformation in Couette geometry:

(y +ro)/ri —ri/(y +ro)
ro/ri—r1/ro
where rg and ry are the inner and outer diameters, respectively. Beyond & ~ 0.25, strain
starts to localize in a shear band. For ¢ > 1, the flow has reached its steady-state
regime and the flow profile exhibits an exponential decay: u(y) =uo exp(—y/A), with

A~1.2.

In the experiment, the introduction of the foam in the gap involves the shearing of
the material in a poorly controlled way. The numerical simulation is therefore more
adequate for probing the transient regime of shear which strongly depends on the

(3.1)

ui(y) = uo
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FiGURE 4. Evolutions of (a) the shear stress, (b) the free (line-length) energy and (c) the
positions of the T1 events within the gap as a function of the applied strain € (data from the
simulation).

shear history of the sample. Figure 4 shows, as a function of the wall displacement,
the evolution of the mean shear stress, the energy of the foam (total film length), and
the location of the T1 events across the gap. The line tension is set at 1, and the foam
dimensions are set at L, X L, =2.5x 1; the wall displacement d is thus numerically
equivalent to the total applied strain €=d/L,. For € < 1, the deformation of the
material is mostly elastic: only a small number of T1 events, uniformly distributed
across the gap, are observed. For € ~ 1, shear-banding occurs: most of the T1 events
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gather in a narrow region close to one of the confining walls (the movie of this
simulation is available with the online version of the paper). The sharp transition
is associated with an overshoot of the shear stress and the appearance of large
avalanches of rearrangements, as evidenced by the increase of the drop amplitudes in
the shear stress and energy curves (figure 4a, b).

As the foam is sheared, it experiences a series of plastic events that modify its
topological structure. Each metastable configuration is entirely characterized by the
relative positions of the bubbles. We showed in Part 1 that this trajectory in the
configuration space can be associated with a path in an energy landscape. After each
T1 event, the system falls into a new energy basin which is defined as the energy
versus strain relation of the given structure.

For each value of the total imposed strain g, this quadratic function can be
numerically obtained using the following method (detailed in Part 1): after an imposed
strain g, the possibility for T1 events to occur is forbidden in the simulation so that
the topology is frozen in its particular configuration. The line-length energy of the
foam E(g’) is then monitored as a function of the strain ¢ and the resulting curve is
fitted using the following relation:

Eelast(‘?,) = Eo(¢) + %A,LL(E) (8/ - Splast(g))zv (3.2)

where A is the total area of the foam. This allows us to extract, for each configuration
reached after an imposed strain &, several parameters that define the energy basin:
E, is the minimum energy of the structure, u is the tangent shear modulus along the
x-direction and &, is the value of the shear strain (or equivalently the position of the
wall) for which the foam energy is minimum. The latter can be viewed as the amount
of strain that has been irreversibly released through the successive plastic events that
have occurred since the shear started. The imposed strain can thus be decomposed
into an irreversible (plastic) and a stored (elastic) component: & = €jasr + Eplast-

Figure 5 shows the evolution of these different numbers as a function of the imposed
strain €. In agreement with the findings of Part 1, Ey and p are found to decrease with
the strain for € < 0.5. In this transient regime, €,,, remains almost constant which
indicates that the initial T1 events relax the structure, but do not significantly release
the shear strain. As the system enters the localized regime, a significant increase of Eg
is observed whereas p remains unchanged. The plastic component of the strain &pjqy
linearly increases whereas the elastic part reaches a constant value. In the steady-state
regime, the T1 events mainly release the imposed strain.

3.1. Discussion

In the numerical simulation, although the imposed stress is uniform, the flow is highly
asymmetrical. As already pointed out by Kabla & Debrégeas (2003) and Varnik et al.
(2003), this observation hampers the possibility of describing the foam mechanical
response using a rheological equation such as o = f(¢). In particular, the Hershel-
Buckley model, o =0 + né&", which is commonly used for aqueous foams, is expected
to fail in the limit of ¢ =0. This has been established by Rodts, Baudez & Coussot
(2005) using MRI imaging of three-dimensional foams sheared in a Couette cell.
They observe a discontinuous drop of the shear rate measured across the gap, from
¢, =10s7"! to 0. The width of the transition zone, which is below the MRI resolution,
is believed to be of the order of a few bubble diameters.

This observation can be understood by noting that ¢! =0.1s is of the order of the
duration of a T1 event which has been evaluated for the same commercial shaving
foam by Gopal & Durian (1999). When the average strain rate falls below this critical
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FiGURE 5. Evolutions of (a) the structural energy Ey, (b) the shear modulus, and (c) the
plastically relaxed and elastically stored strain components as a function of the imposed strain
(data from the simulation). In (c), the dashed line is the sum of the two components of strain
which, by definition, is equal to the imposed strain.

value, the flow becomes intermittent: the local instantaneous strain rate is either 0
in the absence of a T1 process, or é.=1/t7; when a T1 occurs. In this regime, the
long-range elastic stress that couples the different regions of the material becomes
dominant over local viscous stress and allows for spatially heterogeneous flow to
develop. In the case of Rodts’ experiment, as well as in our system, this leads to an
abrupt decay of the plastic strain rate over a distance of a few bubble diameters.

In order to understand the spatial and temporal statistics of the plastic processes
in the intermittent regime, we must probe the elastic effect of the plastic events on
the entire material. This is done in the next section using the results of the numerical
simulation which, in contrast to the experiment, provides a sufficient resolution for
such a study.
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FIGURE 6. (a, b) Shear stress variation and (c, d) displacement fields induced by a T1 event,
respectively, located close to the wall and in the middle of the gap. These simulation data have
been obtained by averaging 100 different T1 events located at the same distance from the wall.
In (a) and (b), blue corresponds to a stress decrease (with respect to the imposed stress), and
red to a stress increase.

4. The short-time scale: T1 events and avalanches
4.1. Elastic effect of a T1 event

The stress field in the foam can be evaluated by extrapolating (2.2) to small sub-
regions (in practice down to the bubble size). By comparing the equilibrated structures
of the foam before and after a rearrangement, we can extract the local displacement
and shear stress variation induced by the event at each location. Figure 6 displays
the resulting fields for a T1 event located in the middle of the foam and close to one
of the walls. In order to enhance the resolution of the measurements, the data are
averaged over one hundred T1 events located at the same distance from the wall.

Analytical results of Picard et al. (2004) show that this propagator corresponds to
the response of a two-dimensional elastic material to an elementary force quadrupole.
It should be stressed, however, that the T1 propagator obtained from the simulation
is slightly asymmetrical which might be due to the shear-induced anisotropy of the
foam.

We first focus on the line-averaged (along the shear direction x) characteristics of
these fields. The average shear stress relaxation is found to be identical for each line
as imposed by the constraint of mechanical equilibrium. Figures 7(a) and 7(b) show
the displacement profiles; to first order, a T1 event is equivalent to a fracture running
along the line of the T1 event. The upper part of the material ‘slides’ with respect to
the lower part over a length 8dr;. In each sliding block, the displacement profile is
linear and the slope defines a shear strain ey =ddr1/L, where L, is the gap width.

Because of the foam polydispersity, a 30% dispersion in the measured value of
ddry is observed. A scaling of the mean length 8dr; can be estimated by considering
that the bubbles involved in the T1 event move over a distance of order D, whereas
the L,/D bubbles in the rest of the line do not rearrange (L, is the size of the foam
in the shear direction). Thus the average sliding distance ddr; is expected to be

D

Sy ~ D - (4.1)
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FIGURE 7. (a, b) The deformation profiles (x-averaged displacement) induced by a T1 event
located (a) near the wall and (b) in the middle of the gap. §dr; is the mean sliding distance,
and Ser; the corresponding elementary strain release induced by the T1 event. Because of the
foam polydispersity, a 30% dispersion in the these quantities is observed. (¢) Dependence of
dery on the system size (D is the mean bubble diameter and A is the foam area). Each data
point corresponds to an average over 100 T1 events.

The elastic deformation released by the T1 event is thus

Sdri D>

= (4.2)

der = e

y
where A is the total area of the foam. These two relations are successfully confirmed
by varying the system size (figure 7c).

Having identified the result of a single T1 event, the cumulative effect of a series
of these plastic events on the evolution of the stress field can now be examined. As
previously, we consider a system of size (Lx, Ly), sheared along the x-direction, with
an imposed shear rate ¢ in the quasi-static regime. We denote u(y, ) the displacement
in the x-direction at a distance y from the wall, averaged over the shear direction. The
associated strain e(y, t) =du/dy is decomposed into a (stored) elastic term &,,5(y, 1)
and a plastic term &,4x(y, 1):

S(y, t) = Eelast(y9 t) + 8plast(y7 t)- (43)

We now define w(y, r) as the density function of T1 events occurring at a time ¢
and a height y in the foam:

w(y, 1) = Z(S()’ —yri) "8t — ;).

T1 (i)

(44)

When a rearrangement occurs at a location yri, it increases the plastic strain by a
quantity §dr; at y = yrq, and elastically relaxes the entire system by a strain amplitude
8er1 =&dr1/Ly. We can thus write:

8 elas 9 - ! ’

Beauly 1) _ 54, / oy, 1)dy, (4.5)
ot ;

0 Eplast(y, t

9 Eplasil V> 1) a’t(y ) — w(y, 1) 8dy,. (4.6)

The integral in (4.5) is a direct consequence of the long-range elastic effect of
T1 events. The strain evolution at any location in the foam depends on all the
rearrangements occurring in the system. Moreover, &..x(y, ) does not depend on y;
as the local shear stress is uniform in all the lines, the elastically stored deformation
also remains uniform. These equations yield a relationship between the statistics of
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the plastic events and the flow profile v(y) =du/d¢ in the steady-state regime:

dv(y) _ d E(y’ t) _ 0 gelast(y7 t) de lasr(y1 t)
S e S A S e AN
=0
= d:i(y ) — (wly. 1)), 8. (4.8)
y

This relation is demonstrated in figure 8 which displays both the gradient of the
flow profile and the histogram of the T1 event locations in the steady-state regime.
This result is due to the foam elasticity which induces global shear stress relaxation in
response to local plastic events. This effect allows for the existence of heterogeneous
flow profiles. More precisely, this approach shows that any flow profile is consistent
with the mechanical equilibrium condition, as each T1 event produces the same
stress relaxation in each line, regardless of its location in the gap. Therefore, this line-
averaged description appears inadequate to address the question of the shear-banding
instability and further examination into the origins of the spatial correlations between
T1 events is required.

4.2. From a T1 event to the avalanche

When a T1 event occurs, it generally triggers an avalanche of events that take
place in the neighbouring region. Figure 9(a) shows the distribution of avalanche
sizes measured in numbers of T1 events in the simulation. A power-law decay
of the avalanche size distribution is observed, with an exponent —1.5 consistent
with numerical studies on elastic disordered systems (Chen, Bak & Obukhov 1991;
Okuzono & Kawasaki 1995). As shown in figure 9(b), the energy released during the
avalanche is a linear function of the avalanche size: each rearrangement releases a
given amount of energy (or shear stress) which numerically coincides with A der, T,.
Though the quasi-static model used here is a priori inaccurate for modelling fast
avalanching processes, it agrees with the vertex model (Okuzono & Kawasaki 1995)
which includes viscous dissipation at the bubble scale; this suggests that the exponent
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FIGURE 9. (a) Statistical distribution of the elastic energy released by the avalanches of plastic
events. The dashed line indicates a —1.5 exponent power-law decay. (b) Released energy as a
function of the number of T1 events involved. These results come from the simulation data in
the steady-state regime.

value is likely to be a generic feature of these systems. This observation contrasts,
however, with the measurements of Tewari et al. (1999) who observe with a bubble
model (Durian 1995) a weaker power law for the rearrangement energy histograms,
as well as a nonlinearity between the energy released per avalanche and the avalanche
size. This discrepancy might result from the different nature of the plasticity between
the vertex model and the bubble model where bubbles are modelled as soft overlapping
spheres and where rearrangements are not as well defined.

The avalanches appear to develop preferentially along shear lines (figure 10). This
trend can be understood from the observation of the pattern displayed in figure 6,
which shows that the shear-stress variation field induced by a T1 event is highly
anisotropic. Although the shear stress is globally relaxed, it is increased in some
regions, in particular in the line where the T1 event took place. This increase is likely
to trigger further T1 events in the same line and can lead cumulatively to a complete
‘unzipping’ of the line as illustrated in figure 10.

Because of the disordered nature of the foam, the collective reorganization of the
bubbles in the shear band is very different from the standard dislocation motion
that controls plasticity in crystalline two-dimensional foams (Bragg & Nye 1947).
Figure 10(c) shows the location along the shear band of the rearrangements during
two consecutive avalanches. Although consecutive T1 events are often nearby, after
three to four rearrangements, the location of the plastic events typically moves to
another part of the shear band.

We quantitatively analyse this process in the steady-state regime by measuring
the spatial correlations of the rearrangements along the flow direction. Figure 11(a)
shows the coordinate x; of the ith T1 event as a function of i. The shear band
develops after 300 rearrangements (dashed-line). Hereinafter, the probability function
P (Ax)= va _10(x;4x —x; — Ax)/N is computed (P, represents the probability for
two rearrangements separated by k — 1 events in the sequence to be located at a
distance Ax from each other). The two large peaks of P; at Ax =+D in figure 11(b)
demonstrate the existence of strong spatial correlations between successive rearran-
gements. However, this correlation vanishes after about three rearrangements as
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that have not plastically yielded previously. Movies showing the complete sequence of these
avalanches are available with the online version of the paper.

indicated by figure 11(c) which shows the decay of the spatial correlation as a
function of the difference in the indices of the two T1 events.

5. The shear-banding instability

The previous section showed that the peculiar form of the stress propagator
associated with a T1 event can account for the appearance of fracture-like processes
orientated along the shear direction. This is a first step toward the understanding of
the shear-banding instability. However, it does not explain why consecutive avalanches
take place in the same region of the foam so that the shear-band is stable in the
long run. In the experiment, this could be due to the decay of the mean shear stress
across the gap inherent to the Couette geometry, which would maintain the shear
band in the region of higher stress near the inner cylinder. However, the numerical
study establishes that the same process occurs in plane-parallel shearing geometry in
which the shear stress is homogeneous across the gap.
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FIGURE 11. (a) Position x; of the rearrangements along the shear direction, as a function of
the index i of the rearrangement in the sequence (i is the total number of rearrangements
that have occurred since the beginning of the simulation). (b) Probability function Pi(Ax) (see
text) for different values of k. The thick solid line corresponds to »,, ;3o Px(Ax)/10. At long
time scale, Py(Ax) is constant, with a value P,,=1/L,. (¢) Deviation from the uncorrelated
statistics, as a function of the difference k in the indexes of the two T1 events.

The stability of the shear band over time suggests that the shear-banding process
is associated with the development of structural heterogeneities which remain
permanently imprinted in the foam. In order to test this hypothesis, we attempt
to identify local quantities that may differ in the shear band as compared with the
rest of the material. In contrast with many studies based on topological measurements
(the so-called w, parameter for instance (Weaire & Kermode 1983; Abd el Kader &
Earnshaw 1999; Weaire Hutzler 1999), here we focus on energetic and mechanical
parameters. This approach aims at offering a more generic framework which may be
extended to other disordered systems.

5.1. Spatial fluctuations of the static stress field

The disordered nature of the foam structure results in spatial heterogeneities of the
static stress field. To characterize these fluctuations, we evaluate, for each bubble of
index i at time ¢, the quantity:

5so-i(t)zo’i(t)_6(y’t)v (51)

where o;(¢) is the bubble shear stress and & (y,t) is the mean shear stress in the
corresponding line. (The indices xy are ignored in the notation of the shear stress, but
only this component is considered. The index s stands for static stress fluctuations,
as opposed to the dynamic stress fluctuations studied in the next section.) Figure 12
shows the statistical distributions of §;0 (i) (notated SSD for static stress distribution),
normalized by & (y, f), in both the experiment and the numerical simulation. These
graphs, obtained from two distinct regions of the foam, show that the SSDs are wider
at the location of the shear band than in distant regions. To quantitatively probe the
evolution of this characteristic of the stress field, we monitor, for different regions of
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FIGURE 12. Distribution of the bubble shear stress deviation §;0(i) to the local mean value
(a, b) in the experiment and (c, d) in the simulation, in the steady-state regime. Two different
regions are analysed: (a, c) the shear band, and (b, d) a region located 10 bubble diameters
away from the shear band. The regions correspond to strips of width 1 bubble diameter in
the experiment, and 2 bubble diameters in the simulation. In order to compare numerical and
experimental data, shear stress values have been scaled with respect to the mean shear stress
in the steady-state regime.

the sample, the variance of the SSD notated Ao which is defined as:

> aisio(1)
Aol (t) = - (5.2)

b
D a
i

where g; is the area of the bubble i. Figure 13(a) shows, in the case of the simulation,
the evolution of A;0? in three non-overlapping regions of the sample. A similar
decrease of the three SSD widths is first observed for an imposed strain lower than
0.5. At the onset of shear banding, the variance of the SSD significantly increases in
the shear-band region (square symbols), whereas it remains constant in the rest of
the material.

Another characteristic of the foam was previously introduced, the structural energy
E,, defined as the total film-length measured under zero shear stress (it is also the
minimum energy of the foam for a given topology and boundary conditions). It is
found to increase rapidly at the entrance of the localized regime (figure 5). Figure 13(b)
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FIGURE 13. Evolution of (a) the variance Ayo? of the static stress distribution (SSD) and
(b) the structural energy E, for three different layers of the foam (simulation). The layers
correspond to strips of width 5 bubble diameters. O, shear-band region; <, neighbourhood of
the opposite wall; +, the middle of the foam. The arrows indicate the maximum amplitudes
of variation of both quantities used to test (5.5).

shows the evolution of E, obtained from the three sub-regions described before. E,
exhibits a behaviour qualitatively similar to that observed for the SSD variance.

A simple picture can clarify the physical link between both quantities: consider a
macroscopic region of the material submitted to an average shear stress . Assuming
that all bubbles have the same typical area a and a shear modulus wu, the energy E(o)
of the region can be written as:

_ o}
E(a)zZ(eo—i—azM), (5.3)

i

with N being the total number of bubbles, and A= Na the region area. E() can
also be rewritten as:
<8$o-2>‘ o2
LA, 5.4
2 u + 2u (34)
Therefore, the structural energy Ey = E(a =0), as a function of the variance of the
SSD, is

E(@) = Neg+ A

ASO‘Z

2p

From figure 13(a), it appears that the maximum amplitudes of variation of A o>
and E,, obtained numerically during a shear experiment, are, respectively, of the order
of 10 and 0.4, with a subregion areca A =0.75. From (5.5), this yields an expected
value for p of the order of 10, in good agreement with the numerical measurements.

Eo= Neg+ A . (5.5)

5.2. A simple scenario for the shear-banding instability

It has been shown that the transition to shear banding is associated with the
development of stress heterogeneities in the shear band, which can be estimated
by measuring either E, or Ao>. As the stress distribution widens, the probability
of finding clusters of bubbles submitted to a much larger stress than the average
is increased. These sites are more likely to plastically yield in response to a stress
increment. It is therefore reasonable to associate the widening of the stress distribution
with a decrease in the local yield stress. (Beyond this qualitative description, there is
no obvious way to define a local threshold for plasticity in disordered foams.)
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FIGURE 14. Scenario for the shear-banding instability. (a—c) The stress distributions in two
distinct regions of the foam, at three different times: (a) beginning of the experiment: the ‘fresh’
foam stress field is homogeneous, (b) at the onset of shear-banding: a T1 event which triggers
an avalanche of rearrangements and enlarges the stress distribution, (c¢) in the steady-state
regime: the region where the stress distribution is wider has a lower yield stress. It experiences
most of the T1 events. (d) The typical evolution of &, and of Ac? in the two regions. As the
shear band develops, the yield stress decreases which results in the observed overshoot of the
stress versus strain curve.

Under this hypothesis, a qualitative scenario for the shear-banding instability can
be proposed, based on the evolution of the local stress distributions illustrated in
figure 14. Let us consider two distinct regions of the foam whose stress distributions
are initially assumed to be similar (figure 14a). The initial shearing anneals a few
structural defects as described in Part 1. The mean shear stress increases until a large
fraction of the foam is at the threshold of plastic yielding (figure 14b). In this critical
state, a T1 event may trigger an avalanche which breaks the symmetry of the system
by locally enlarging the static stress distribution (figure 10a). A limited region of the
foam now has a lower yield stress and is therefore more likely to experience further
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plastic events. This description is in many regards similar to the approach proposed
by Bulatov & Argon (1994a, b) in their pioneering work on disordered systems at
low temperature. It offers a simple way of understanding the overshoot of the stress
versus strain relationship, observed in a wide range of systems (Khan et al. 1988;
Losert et al. 2000).

6. Dynamic stress fluctuations

The previous scenario is based on the observation that plastic events induce both
global stress relaxation and local stress heterogeneities. Such a distinction should,
however, be refined: T1 events also produce stress heterogeneities far from their
location, as depicted on figures 3 and 6. In this section, we describe in more detail the
dynamical properties of the stress fluctuations in the continuous flow regime induced
by the consecutive T1 events.

6.1. Dynamics of stress fluctuations

We evaluate, for each bubble i, time ¢ and time-interval Af, the dynamic stress
fluctuation (see (5.1)):

8d0'i(t, At) :530'[(t+AI)—630'[(t). (61)

Figure 15 shows the resulting dynamic stress fluctuation distributions (DSFD) along
with the static stress distributions (SSD), obtained from the experiment at increasing
distances from the inner edge. The DSFD have been evaluated for a time interval
At =1, corresponding to a wall displacement of 1 bubble diameter. Two situations
can be distinguished. In the first three layers of bubbles, the SSD and the DSFD are
almost identical and exhibit a remarkable Gaussian shape. This similarity indicates
that the static stress field is entirely renewed within a time interval smaller than 7. To
use an analogy, the system is thermalized within this period of time. For increasing
distances from the wheel edge, the width of the DSFD monotonically decreases and
becomes significantly smaller than the width of the SSD. In these lines distant from
the shear band, the stress fluctuations are insufficient to renew the frozen stress field
and the system is mechanically quenched. (Janiaud & Graner (2005) have studied
the time fluctuations of the texture tensor on our data. This tensor is found to vary
linearly with the stress tensor. Consistently, they observed that the distribution of the
fluctuations of this quantity is larger in the shear-band region than in the rest of the
material.)

To obtain a more quantitative insight into the DSFD properties, its variance is
measured for all time lapses At and lines y:

Ao (y, At) = (8,07(t, At)) (6.2)

bubbles within {y+38y}.r"

Figure 16(a) shows the evolution of A,o?(y, At) with increasing time intervals
At, obtained from the experiment. It exhibits a quasi-diffusive behaviour (with an
exponent of the order of 0.8 for the first few lines) for At < 1y, and reaches a plateau at
longer time. The transition time between these two regimes is an increasing function
of the distance to the shearing edge. As shown in figure 16(b), the short time-scale
diffusion constant decays exponentially with y in the vicinity of the shear band,
whereas at larger distances, it exhibits a much slower decay.

6.2. Stochastic model

In order to understand these observations, a semi-quantitative stochastic model is
developed in this section which aims to relate the dynamics of stress fluctuations to
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FIGURE 15. Static stress distributions P(8;0;) and dynamic stress distribution P(8;0;(At))
measured in the steady-state regime for At =ty at different distances from the inner wall. Data
are obtained from the experiment in the steady-state regime.

the statistical properties of the T1 events. For simplicity, all T1 events are assumed to
produce the same stress relaxation (we thus ignore statistical deviations induced by the
foam polydispersity which are found to be of the order of 30% in the simulation). We
use the analytical results of Picard et al. (2004) who calculated the elastic propagator
associated with a discrete plastic event in a two-dimensional elastic system, to describe
the elastic perturbation induced by each T1 event. Ignoring the effect of boundaries on
the stress fluctuations, the elastic propagator associated with a T1 event located at the
origin is thus, in polar coordinates (r, #) (6 being measured from the shearing x-axis):

G(r,0) = uder1 + Go(r,6) with Go(r, 8) = aaopzch’ffg). (6.3)
The first term in G corresponds to the homogeneous strain relaxation induced by the
plastic event, whose maximum amplitude e7; depends on the system size (see (4.3)).
In the fluctuation term Gy, 8oy is the stress variation associated with the local plastic
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FIGURE 16. Variance of the dynamic stress fluctuations distribution (DSFD) (a) as a function
of At for increasing distances y from the inner wheel (each curve corresponds to a line of width
1 bubble diameter), and (b) as a function of y for different At/7y (from 0.1 to 1, every 0.1,
and from 1 to 10, every 1). These results are obtained from the experiment in the steady-state
regime.

strain e’T‘jc‘” ~ 1, so that dop ~ . The functional form of G, exhibits the quadrupolar
symmetry observed in the simulation with a 1/r? decay.

6.2.1. T'1 Statistics

In order to characterize the spatio-temporal statistics of the T1 events, we introduce
the density function f(x, y, ) defined as:

fy, 1) =2 8(x —xi)8(y — yi)d(r — 1;), (6.4)

where (x;, y;, t;) are the coordinates in space and time of the T1 events (hereinafter, all
spatial coordinates are expressed in units of bubble diameter D). It has been shown
in §4.2 that spatial correlations between rearrangements vanish after two to three T1
events. As we will consider longer time scales, we assume here that T1 events are
completely uncorrelated in space and time. This results in the following statistical
property for the T1 events density function:

(e, y, 0 f(x + Ax,y,1)), , =17 (y) 8(Ax) 81 —1') (6.5)

where 771(y) =(f(x, y,1))., =0v(y)/dy is both the line-averaged T1 frequency and
the local strain-rate (equation (4.8)). (This approach is formally analogous to standard
stochastic descriptions of surface growth by molecules adsorption (Barabasi & Stanley
1995) which allows us to describe the evolution of interface roughness as a function
of the number of adsorbed molecules. Here we seek to relate the ‘roughness’ of f, i.e.
the evolution of the spatial heterogeneities in the number of T1 events per site.) The
function §(Ax) corresponds implicitly to the two-dimensional delta function.
The time-integrated density function

t+At

plx,y,t, At) = / flx,y,t)dr

t'=t

is further introduced. This function, which measures the number of T1 events that
occur between ¢ and ¢ + At at location (x, y), may be decomposed into a mean and
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FIGURE 17. (a) Evolution of {p(x, y, t, At)),, (dashed line) and (8p(x, y, t, At)?),; (solid line)
calculated from the T1 events located within a 1 bubble diameter wide strip in the shear band,
in the steady-state regime (simulation).

a fluctuating term:
p(x,y.1, Aty =17 (y)Ar + 8p(x, y, 1, At). (6.6)

A uniform distribution of (identical) T1 events has no effect on the shear stress
fluctuations, and only leads to a homogeneous relaxation of the mean shear stress.
Therefore, the stress fluctuations are controlled by the statistical properties of §p.
Since rearrangements are assumed to be uncorrelated in space and time, the function
o follows Poisson statistics with the characteristic property that the variance (8p2),
is equal to the mean (p),, (Grimmett & Stirzaker 2001). This leads to the following
autocorrelation function for §p:

(8p(x, y, 1, A)YSp(x + Ax, y, t, At)),, = T~ (y)At8(Ax). (6.7)

In order to test the validity of this relation, the function p is evaluated in the
simulation by monitoring, at each site (x, y), the T1 events located within a distance
D/2. Figure 17(a) shows, for a line of width 1 bubble diameter in the shear band,
the evolution of the mean number of T1 events per site {(o(x, y,t, At)),, (dashed
line), and the mean square deviation (8p(x, y,t, At)),, (solid line) as a function of
At. On short time scales, (§p?),, and (p),, exhibit a similar linear increase with At
in agreement with (6.7). For At >1(y), however, (§p*(At)),, becomes significantly
smaller than (p),,. This second regime indicates that the hypothesis of Markovian
statistics for the T1 events sequence is incorrect for integration times At larger than
7(y); the locations of the T1 events that occur between ¢ and ¢ + Ar depend on the
sequence of T1 events that occurred previously in a way which limit the amplitudes
of variation of p.

This effect is directly visible on figure 10(c) which shows that, in a sequence of two
consecutive avalanches, the second one involves T1 events preferentially in the regions
that have not plastically yielded during the first one. This long time-scale statistical
bias can be qualitatively understood through a simple argument. If the sequence
of T1 events were completely stochastic, this would lead to stress fluctuations of
infinite amplitude, which is incompatible with the existence of a finite yield stress.
Conversely, a constraint of finite stress fluctuations would impose a bound on 8p? if
all rearrangements produced the same stress perturbation. However, any dispersion
in the values of the stress oy, released by the T1 events, allows for a slow diffusive
increase of §p> as observed in figure 17 at large At.
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In our attempt to model the stress dynamics, we assumed that all the events produce
a similar effect (8o is single valued). Consistently, (§0%) must be bounded. We thus
explicitly impose a maximum deviation in the total number of T1 events per site
equal to 1 reached after a time 7(y) and modify (6.7) accordingly:

(80(x, v, 1, A)Sp(x + Ax, y, 1, A1)y, = (1 —exp (-T(Ayt )>> s(Ax)  (6.8)

6.2.2. Shear stress fluctuations

Having described the statistics of the T1 events, we now seek to evaluate the stress
fluctuations that they induce on a given line y. Based on (6.3) and (6.8), the variance
of the DSFD of line y originating from T1 events taking place in line y, can be
written as:

2
A2 (A1) = << / p(x/,y,t,Az)Go(x—x/,y—yp)dx’) >
x! X,t

= / / Go(X',y —y,)Go(X", y — yp)
X/ "
x(p(x — X', y, 1, At)p(x — X", y, 1, At)),, dX'dX"

= / / Go(X',y —yp)Go(X", y — p)
X’ "
x (8p(x — X', y,t, At)dp(x — X", y, t, At)),,dX dX",

Yera At
Aol (At)= —9 [1— —— . 6.9
w02 (A1) ny_pr( exp( f(y,,)» (6.9)

This relationship is only valid for y # y,. The exact calculation for y ~y, would
require a detailed description of the plastic process at the bubble scale, which is beyond
the scope of the present paper. Instead, we set the value of the elastic cutoff length at
1 (i.e. the bubble diameter) and assume that, for r < 1, the stress fluctuation amplitude
is uniform and equal to oy. Under this assumption, the previous developments lead
to:

M40y (A1) = 80 <1 —exp (—T(Ay’ )>> : (6.10)

Assuming these different sources of fluctuation to be uncorrelated, the variance of
the dynamic stress fluctuation distribution at a given line y can then be obtained by
integrating (6.9) and (6.10) over y,:

Aoy, At) = / Ago; (v, Ar)dy,. (6.11)
Yp

6.2.3. Numerical solutions

This calculation yields a prediction of the statistics of the stress fluctuations in the
sheared foam from the knowledge of the strain-rate profile 7(y)~!. In order to test this
model against the experiment, we extract t(y) from the measured plastic flow profile
(figure 2). Since the latter decays exponentially with the distance from the inner wall,
with a decay length of the order of 1 bubble diameter, t(y) can be estimated as:

T(y) = 70 exp(y). (6.12)

Figure 18 shows the characteristics of Ayo%(y, At) numerically calculated for a
discrete system composed of 20 lines of bubbles (§oy is set at 1). This model accounts
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FiGUre 18. Predicted evolution of the variance of the dynamical stress fluctuations distribution
(see text for details of the model). The different values for the time intervals Ar and distances
y from the shearing wall, are similar to those used in figure 16 to allow for a direct comparison
with the experiment.

for several features of its experimental counterpart (figure 16), namely (i) a diffusive
regime for Ar < 19, (ii) a saturation occurring after a time of order t(y), (iii) a
transition from an exponential decay in the shear band to a power-law decay at
larger distance. These two regimes can be associated with two distinct processes.
Local plasticity is the main source of stress fluctuation in the layers of bubbles where
a large number of T1 events occur, and the resulting stress dynamics is directly
connected to the plastic frequency 77!'(y) of the given line. In contrast, long-range
elastic stress fluctuations induced by distant T1 events are dominant for lines with
negligible plasticity. (This interpretation is confirmed by the experimental observation
that these fluctuations exhibit large length-scale spatial correlations in distant lines, as
reported in Debrégeas et al. (2001).) The resulting stress fluctuation amplitude decays
as a power law with the distance to the shear band.

6.3. Discussion

The observation made in this section that the stress fluctuations are not diffusive on
long time-scales is due to the fact that the cumulative effect of T1 events in a given
line can only produce a finite deformation of the structure in a distant line. As a
result, beyond the shear band where a large number of rearrangements are observed,
these fluctuations are insufficiently intense to renew the structure (figure 15); their
amplitude remains small in comparison to the width of the static stress distribution.
The latter, which is mostly set during foam preparation, thus plays a prominent role
in fixing the local frequency of T1 events.

Several mean-field models of soft glass rheology are based on empirical equations
that relate the stress fluctuation amplitude to the plastic event frequency (Sollich
et al. 1997; Falk & Langer 1998). They capture many of the features observed in
foams at finite shear rate in which fluctuations originating from nearby T1 events
are expected to be dominant. As mean field models, these approaches are inadequate
to describe correctly the creep flow behaviour for which long-range elastic coupling
becomes important. This is done by Baret, Vandembroucq & Roux (2002) and Picard
et al. (2005) in numerical models which exhibit shear banding. Picard et al. use the
exact elastic calculation of the shear stress released by a plastic event. Although, in
confined geometries, they found that the shear band develops close to the walls, the
shear-banding instability is still observed in bi-periodic systems.



70 A. Kabla, J. Scheibert and G. Debregeas

7. Conclusion

We showed in Part 1 that when a foam is submitted to an oscillating shear of
moderate amplitude (maximum strain less than 0.5), the strain reduces the structural
disorder by curing topological defects, thus extending the elastic domain of the
material. In this regime, T1 events are uncorrelated in space and time. In contrast,
for large amplitude of strain, T1 events occur in the form of fracture-like processes
which yield local heterogeneities in the stress field and a reduction of the yield stress.
This mechanism is at the base of the shear-banding instability observed in both the
simulation and the experiment.

In the steady-state regime, large stress fluctuations are observed even in the region
where few plastic events occur. These fluctuations are associated with the long-range
elastic relaxation induced by T1 events. A simple statistical model allows us to predict
the time evolution of these fluctuations from the knowledge of the time-averaged flow
profile. Although the dynamic fluctuations can be estimated regardless of the detailed
foam structure, the local T1 event frequency cannot be extracted from the knowledge
of the fluctuations alone. The probability for a plastic event to occur depends on
both the structural disorder of the system (which yields an effective yield stress),
and the fluctuations that allow this threshold to be reached. We therefore believe
that the model developed in Debrégeas et al. (2001), which was based on dynamical
fluctuations alone, was incomplete. Further work is necessary to provide a complete
picture of the coupled dynamic between stress fluctuations and plasticity in such
disordered systems.

Many of these results should remain valid for disordered systems at low temperature
provided that there is (i) an elastic response at low strain and (ii) a typical duration of
plastic relaxation much shorter than the imposed shearing time scale. The elastic
propagator associated with a local plastic event will exhibit the same generic
pattern, regardless of the underlying structure (Eshelby 1957; Picard et al. 2004).
The quadrupolar symmetry of this stress relaxation pattern is at the origin of the
fracture-like processes observed in foam and other systems such as Lennard-Jones
glasses for instance (Maloney & Lemaitre 2004; Shi & Falk 2005).

The long-range elastic coupling opens the possibility of heterogeneous flows.
However, the evolution toward long-lived localization (shear bands) might depend
on many specific characteristics of the system. This paper provides one possible
explanation which is based on the appearance of large heterogeneities in the stress
distributions, induced by the first avalanches of plastic processes. The regions where
the stress distributions are widest have a lower effective yield stress, and are thus
more likely to experience further plastic processes. This self-amplifying process tends
to maintain the plastic events in limited regions of the material. Such a shear-banding
process requires a broad enough range of disorder accessible to the system, in order to
allow large variations of the local yield stress to pertain. It is clearly not applicable to
monodisperse (or even fairly monodisperse) systems, in which the flow is associated
with the motion of dislocation as in crystalline solids (Cox et al. 2004; Wang et al.
2006). The influence of the walls might also be critical since they locally constrain
the bubble shapes and thus tend to make the material locally more likely to yield
(Howell, Behringer & Veje 1999; Mueth et al. 2000; Fenistein & van Hecke 2003).
The precise conditions that lead to the shear-banding transition still remain to be
clarified.

The experiments on confined foams were initiated with Jean-Marc di Meglio. We
wish to thank Guillemette Picard, Christiane Caroli, Olivier Pouliquen and Jean
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Rajchenbach for fruitful discussions. We are especially grateful to Christiane Caroli
for her careful reading of Part 1.
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